

Robust modeling applied to energy production and use

Florian Pradelle

Department of Mechanical Engineering

🛯 pradelle@puc-rio.br

Brunno Santos

Department of Chemical and Materials Engineering

🔄 bsantos@puc-rio.br

Workshop Digital Science and Energy – December 19th, 2023

• Personal Information

Adjunct Professor at the Department of Chemical and Materials Engineering

Coordinator of the Laboratory of Modeling, Automation and Control

Areas of interest:

1. Advanced Process Control (Model Predictive Control);

2. Artificial Intelligence Models in Process Engineering;

3. Digital Transformation (Digital Twins).

engines **dynamometers**

with consumption and emissions measurement

Rapid compression machine

T T T

for the study of combustion

Robust empirical prediction of the washed and unwashed gums formation in mixtures of Brazilian gasoline and ethanol

Campaign of tests

- Use design of experiments approach
- Second order mathematic model with interaction of order 2

Neural Computing and Applications (2023) 35:16267–16284 https://doi.org/10.1007/s00521-023-08396-1 ORIGINAL ARTICLE

Polynomial and ANN models applied to the formation of gums in Brazilian ethanol-gasoline blends—impact of gasoline composition, ethanol concentration, storage temperature, and aging duration

José Eduardo S. P. Carvalho¹ · Brunno F. Santos² · Ana Rosa F. A. Martins² · Sergio L. Braga¹ · Renata N. C. Pradelle³ · Franck Turkovics³ · Béatrice Perrier³ · François Maire³ · Florian Pradelle¹) ANN models

Check fe

- 601 data for washed gums
- 571 data for unwashed gums

Knowledge aquisition / Uncertainty reduction

Phase 1	Phase 2	Phase 3	Phase 4
Doehlert design	Doehlert design	Central composite	Artificial Neural Network (ANN)
Regular gasoline with	Regular gasoline with	Homologation	Data CollectionInputs: Type, Ethanol Concentration, Olefin, Aromatic, Aging and TemperatureOutputs: Washed Gum and Unwashed GumData pre-processing and divisionData normalization Data Division: training and testing/validationDelynomial EquationModel choice $y = a_0 + \sum_{m>n n=1}^{k} \sum_{n=1}^{k} a_n x_n + a_{nm} x_n x_m$ Determination of network architecture and its trainingSelection of network characteristics: • Training function • Objective function • Objective function • Objective function • Objective function • Objective function • Number of parameters • Output functionKannValidation of the ANN modelMain indicators: • Data fitting • Regression plot • Coefficient of determination
or without additive	or without additive	gasoline	
$\% \in [21;94.2] vol\%$	$\% \in [0;50] \ vol\%$	$\% \in [0;80] \ vol\%$	
$D \in [0;161] days$	$D \in [0;161] \ days$	$D \in [0;150] \ days$	
$T \in [18;42]^{\circ}C$	$T \in [23;47]^{\circ}C$	$T \in [20;40]^{\circ}C$	
Properties: Washed gum; Induction period; Water content; Kinematic viscosity; Density	Properties: Unwashed gum Washed gum	Unwashed gum Washed gum	Model verification ANOVA t-student Pareto diagram Coefficient of determination Sum of squared errors Simulation of gum formation performance Response surfaces estimation Parameters evaluation Determination of catalytic effects

Development of predictive models for biomass gasification using artificial neural networks and comparison with a thermodynamic equilibrium model

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORKS (ANN) MODELS TO PREDICT THE PRODUCTION OF CUMULATED BIOGAS FROM FOOD WASTE (FW), FRUITS AND VEGETABLE WASTE (FVW) AND THEIR CODIGESTION (CD)

Database

An extensive literature search was conducted to gather scientific articles containing data on key variables in the AD process for biogas production. 47 previously published scientific papers, composing 2098 samples.

Statistical Analysis of Variables

Data analysis involved constructing histograms using Excel software to identify and address potential outliers.

Model prediction

The modelling of biogas production was carried out using various topologies of artificial neural networks (ANNs).

Input

Detection and Diagnosis of Faults in Diesel Engines via Lubricating Oil Analysis

Chemical compounds found in the lubricant (Mileage at the test date, Mileage since the last oil change, Fe, Cr, Pb, Cu, Sn, Al, Ni,Si, Na, Mg, Ca, Ba, P, Zn, Mo, Ti, Ag, B, V, K, oxidation, nitration, sulfation, soot, % of water % of fuel, % of glycol).

Classification

Each sample presents a diagnosis for three different problems: corrosion, contamination and combustion.

