

pipe flows

underground rivers

confined aquifer

floating structures

waves energy converters

oscillating water column

With real context simulations, farm of converters, optimization...

FLUID/STRUCTURE INTERACTION MODEL:

- Shallow water type hydraulique model Efficient: 2D mesh, robust Additional terms: friction, wind, dispersion...
- Rigid bodies model

Efficient: no mesh, no time step restriction, robust Additional terms: friction, wind, collisions, anchoring...

Isentropique gaz model

Efficient: no mesh, no time step restriction, robust

Additional terms: merging and splitting of the air pokets...

SHALLOW WATER MODEL WITH ROOF: $\partial_t h(\phi) + \nabla \cdot (h(\phi)\overline{u}) = 0$ $\partial_t (h(\phi)\overline{u}) + \nabla \cdot (h(\phi)\overline{u} \otimes \overline{u}) = -h(\phi)\nabla\phi$ $\min(p, \overline{H} - h) = 0$

$$h(\phi) = \min\left(\frac{\phi}{g} - B, \overline{H}\right)$$
$$p(\phi) = \max(0, \phi - gR)$$

SCHEMES:

- Low-Froude scheme to avoid restrictive CFL condition.
- Newmark scheme

to ensure the energy stability.

Good discretization of the pressure field to the body

PROPERTIES:

- Decreasing of the discrete mechanic energy.
- Stability of the steady state at rest.
- Convergence to return to equilibrium.

3/5

AIR POCKETS MODEL:

Question: How model air pressure $\stackrel{\circ}{p}$?

- Large sound velocity asymptotic regime uniform pressure per air pocket
- ▶ Polytropic deformation (PV^m = c_{st}) usually isothermal (m = 1)
- ► Isochoric polytropic merging usually adiabatic $(m = \gamma \approx 1.4)$
- Isochoric polytropic splitting usually isobar (m = 0)

PROPERTY:

▶ for small enough time steps, the model is well-posed.

	Numerical analysis	Operational tool
	+Numerical evidences	2D implementation
▶ Roof modeling	~	 ✓
▶ Layerwise 3D	 ✓ 	 ✓
▶ DISPERSION	v	🛦 Uhaina
▶ Body dynamics	 ✓ 	Chrono
▶ Air pockets modeling	 ✓ 	
▶ High order	🚵 with M. Ricchiuto	
▶ Immersed structure	🛦 with D. Lannes	
▶ Ice modeling	with H. Beaugendre 🛛 🙂	
▶ Non-hydro DF	with M. Kazolea 🛛 😳	
▶ INFILTRATION	with M. Coquerelle 🛛 😳	
► Morphodynamique	٢	

▲ Doc/Post-Doc: ☺

